Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 52(33): 5714-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27040326

RESUMO

High-quality graphene oxide (GO) with high crystallinity and electrical conductivity as well as in situ doped with nitrogen and sulfur is obtained via the electrochemical exfoliation of graphite. Furthermore, iron incorporated GO sheets show promising catalytic activity and stable methanol tolerance durability when used as electrocatalysts for the oxygen reduction reaction.

2.
J Am Chem Soc ; 135(18): 6915-20, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23581974

RESUMO

Successful implementation of molecular solution processing from a homogeneous and stable precursor would provide an alternative, robust approach to process multinary compounds compared with physical vapor deposition. Targeting deposition of chemically clear, high quality crystalline films requires specific molecular structure design and solvent selection. Hydrazine (N2H4) serves as a unique and powerful medium, particularly to incorporate selected metallic elements and chalcogens into a stable solution as metal chalcogenide complexes (MCC). However, not all the elements and compounds can be easily dissolved. In this manuscript, we demonstrate a paradigm to incorporate previously insoluble transitional-metal elements into molecular solution as metal-atom hydrazine/hydrazine derivative complexes (MHHD), as exemplified by dissolving of the zinc constituent as Zn(NH2NHCOO)2(N2H4)2. Investigation into the evolution of molecular structure reveals the hidden roadmap to significantly enrich the variety of building blocks for soluble molecule design. The new category of molecular structures not only set up a prototype to incorporate other elements of interest but also points the direction for other compatible solvent selection. As demonstrated from the molecular precursor combining Sn-/Cu-MCC and Zn-MHHD, an ultrathin film of copper zinc tin sulfide (CZTS) was deposited. Characterization of a transistor based on the CZTS channel layer shows electronic properties comparable to CuInSe2, confirming the robustness of this molecular solution processing and the prospect of earth abundant CZTS for next generation photovoltaic materials. This paradigm potentially outlines a universal pathway, from individual molecular design using selected chelated ligands and combination of building blocks in a simple and stable solution to fundamentally change the way multinary compounds are processed.

3.
Chem Commun (Camb) ; 48(61): 7616-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22732926

RESUMO

A novel C70 fullerene derivative was designed and synthesized by [4+2] cyclic addition reaction between indene derivative (methyl 1H-indene-3-carboxylate) and C70. The absorption and photoluminescence of H120 and its mixed films with different polymer donor materials were investigated, as well as its electrochemical property and electron mobility. It was found that H120 has 0.05 eV higher LUMO level than that of PC(70)BM. Its electron mobility reached 6.32 × 10(-4) cm(2) V(-1) s(-1), which is slightly lower than 9.55 × 10(-4) cm(2) V(-1) s(-1) of PC(70)BM. The photovoltaic devices based on P3HT, and two high efficiency low band gap polymers, PBDTTT-C and PBDTTDPP as donors, with H120 as an acceptor gave power conversion efficiencies of 4.2%, 6.0% and 6.2%, respectively.

4.
J Am Chem Soc ; 134(24): 10071-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22640170

RESUMO

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.

5.
ACS Nano ; 5(12): 9877-82, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22035334

RESUMO

Silver nanowire (AgNW) networks are promising candidates to replace indium-tin-oxide (ITO) as transparent conductors. However, complicated treatments are often required to fuse crossed AgNWs to achieve low resistance and good substrate adhesion. In this work, we demonstrate a simple and effective solution method to achieve highly conductive AgNW composite films with excellent optical transparency and mechanical properties. These properties are achieved via sequentially applying TiO(2) sol-gel and PEDOT:PSS solution to treat the AgNW film. TiO(2) solution volume shrinkage and the capillary force induced by solvent evaporation result in tighter contact between crossed AgNWs and improved film conductivity. The PEDOT:PSS coating acts as a protecting layer to achieve strong adhesion. Organic photovoltaic devices based on the AgNW-TiO(2)-PEDOT:PSS transparent conductor have shown comparable performance to those based on commercial ITO substrates.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Poliestirenos/química , Prata/química , Tiofenos/química , Titânio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Refratometria , Propriedades de Superfície
6.
ACS Nano ; 4(7): 3845-52, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20586422

RESUMO

Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24 degrees 2theta (3.4 A), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications.


Assuntos
Carbono/química , Compostos Orgânicos/química , Óxidos/química , Solventes/química , Temperatura , Condutividade Elétrica , Hidrazinas/química , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , Difração de Raios X
8.
Langmuir ; 22(26): 11092-6, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154589

RESUMO

The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e., a layer of ODMS with a grafting density less than the maximum possible monolayer surface coverage. We demonstrate herein the fabrication of nanoporous PS templates from annealed PS-b-PMMA diblock copolymer thin films on these partial ODMS SAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...